Nuclear marine propulsion

Nuclear marine propulsion is propulsion of a ship by a nuclear reactor. Naval nuclear propulsion is propulsion that specifically refers to naval warships (see Nuclear navy). Only a very few experimental civil nuclear ships have been built; the elimination of fossil fuel has not outweighed the technical, economic and political difficulties of this application of nuclear power.[1]

Contents

Power plants

Operation of a civil or naval ship power plant is similar to land-based nuclear power reactors. A sustained nuclear reaction in the reactor produces heat that is used to boil water. The resulting steam spins a turbine. The turbine shaft may be coupled through a gearbox speed reducer to the ship's propeller, or in a turbo-electric drive system may operate a generator that supplies electric power to motors connected to the propellers.

The Russian, U.S. and British navies rely on steam turbine propulsion, while the French and Chinese ships use the turbine to generate electricity for propulsion (turbo-electric propulsion). Most nuclear submarines have a single reactor, but Russian submarines and the USS Triton had two. Most American aircraft carriers are powered by two reactors, but the USS Enterprise had eight. The majority of marine reactors are of the pressurized water type, although the US and Soviet navies have designed warships powered with liquid metal cooled reactors.

Characteristics of nuclear propulsion

Nuclear power for propulsion has several operating and logistic characteristics that appeal to the designers of ships for both civil and military purposes.

A small amount of nuclear fuel can provide energy equivalent to millions of times its weight in coal or oil. It is quite practical to build a reactor which will operate a vessel for several years without refuelling. Although the cost of manufacturing nuclear fuel elements is high, the overall cost of fuel is much lower than that of the amount of fossil fuel required to generate the same amount of power. Like sailing ships, nuclear vessels are independent of the vagaries of procurement of fuel at every port. The laborious and costly process of loading and burning fuel is largely eliminated for most of the vessel's operating life.

Because of its high power density and the elimination of the need for large fuel bunkers, a nuclear propulsion plant allows more space for paying cargo. It also allows a vessel to operate at higher speeds for years without refuelling. This improves the speed and efficiency of ocean-going commerce. Military vessels, such as submarines and aircraft carriers, can travel at high speeds over vast distances, limited only by the endurance of their crews. Arctic vessels can operate for months, independent of fuel supplies.

Nuclear reactors require no oxygen for combustion and emit no exhaust gas. This is a minor benefit for surface vessels, eliminating the ducts, exhaust stacks and machinery needed to support the burning of fossil fuels. For submersible vessels this is the single, most important advantage. With nuclear power, a submarine can be propelled at speeds comparable to those of surface ships for protracted periods, limited only by crew endurance instead of fuel supply or battery capacity. Although not a motivation for the original development of maritime nuclear power, environmental concerns have sparked increased interest on the part of some who are concerned about effects of CO2, SO2 and other air pollutants emitted by cargo ships. (For economic reasons, ships operate on the lowest-quality fuel their engines can tolerate, resulting in fairly high emissions of pollutants.)

Differences from land power plants

Marine-type reactors differ from land-based commercial electric power reactors in several respects.

While land-based reactors in nuclear power plants produce thousands of megawatts of power, a typical marine propulsion reactor produces no more than a few hundred megawatts. Space considerations dictate that a marine reactor must be physically small, so it must generate a higher power density per unit of space. This means its components are subject to greater stresses than those of a land-based reactor. Its mechanical systems must operate flawlessly under the adverse conditions encountered at sea, including vibration and the pitching and rolling of a ship operating in rough seas. Reactor shutdown mechanisms cannot rely on gravity to drop control rods into place as in a land-based reactor that always remains upright. Salt water corrosion is an additional problem that complicates maintenance.

The fuel in a seagoing reactor is typically more highly enriched (i.e., contains a higher concentration of U235 vs. U238) than that used in a land-based nuclear power plant. Some marine reactors run on relatively low-enriched uranium (requiring frequent refueling). Others run on highly enriched uranium, varying from from 20% U235, to the over 96% U235 found in U.S. submarines [2], in which the resulting smaller core is quieter in operation (a big advantage to a submarine).[3] Using more-highly enriched fuel also increases the reactor's power density and extends the usable life of the nuclear fuel load, but is more expensive and a greater risk to nuclear proliferation than less-highly enriched fuel.[4]

A marine nuclear propulsion plant must be designed to be highly reliable and self sufficient, requiring minimal maintenance and repairs, which might have to be undertaken many thousands of miles from its home port. One of the technical difficulties in designing fuel elements for a seagoing nuclear reactor is the creation of fuel elements which will withstand a large amount of radiation damage. Fuel elements may crack over time and gas bubbles may form. The fuel used in marine reactors is a metal-zirconium alloy rather than the ceramic UO2 (uranium oxide) often used in land-based reactors. Marine reactors are designed for long core life, enabled by the relatively high enrichment of the uranium and by incorporating a "burnable poison" in the fuel elements, which is slowly depleted as the fuel elements age and become less reactive. The gradual dissipation of the "nuclear poison" increases the reactivity of the core to compensate for the lessening reactivity of the aging fuel elements, thereby lengthening the usable life of the fuel. The life of the compact reactor pressure vessel is extended by providing an internal neutron shield, which reduces the damage to the steel from constant bombardment by neutrons.

Decommissioning

Decommissioning nuclear-powered submarines has become a major task for US and Russian navies. After defuelling, U.S. practice is to cut the reactor section from the vessel for disposal in shallow land burial as low-level waste (see the Ship-Submarine recycling program). In Russia, whole vessels, or sealed reactor sections, typically remain stored afloat, although a new facility near Sayda Bay is to provide storage in a concrete-floored facility on land for some submarines in the far north.

Future designs

Russia is well advanced with plans to build a floating nuclear power plant for their far eastern territories. The design has two 35 MWe units based on the KLT-40 reactor used in icebreakers (with refueling every four years). Some Russian naval vessels have been used to supply electricity for domestic and industrial use in remote far eastern and Siberian towns.

Lloyd's Register is investigating the possibility of civilian nuclear marine propulsion and rewriting draft rules.[5]

Civil liability

Insurance of nuclear vessels is not like the insurance of conventional ships. The consequences of an accident could span national boundaries, and the magnitude of possible damage is beyond the capacity of private insurers.[6] A special international agreement, the Brussels Convention on the Liability of Operators of Nuclear Ships, developed in 1962, would have made signatory national governments liable for accidents caused by nuclear vessels under their flag [7] but was never ratified owing to disagreement on the inclusion of warships under the convention.[8] Nuclear reactors under United States jurisdiction are insured by the provisions of the Price Anderson Act.

History

Military

Under the direction of Admiral (then Captain) Hyman G. Rickover,[9] the design, development and production of nuclear marine propulsion plants started in the USA in the 1940s. The first prototype naval reactor was constructed and tested at the National Reactor Testing Station in Idaho (now called the Idaho National Laboratory) in 1953. The first nuclear-powered submarine, USS Nautilus, put to sea in 1955. Much of the early development work on naval reactors was done at the Naval Reactor Facility on the campus of the National Reactor Testing Station (know known as the Idaho National Laboratory).[10]

The Soviet Union also developed nuclear submarines. The first types developed were the November class, the first of which, K-3 "Leninskiy Komsomol", was underway under nuclear power on July 4, 1958.

Nuclear power revolutionized the submarine, finally making it a true "underwater" vessel, rather than a "submersible" craft, which could only stay underwater for limited periods. It gave the submarine the ability to to operate submerged at high speeds, comparable to those of surface vessels, for unlimited periods, dependent only on the endurance of its crew.

Nautilus led to the parallel development of further Skate-class submarines, powered by single reactors, and a cruiser, USS Long Beach, in 1961, powered by two reactors. The aircraft carrier USS Enterprise, commissioned in 1961, is powered by eight reactor units.

By 1962 the United States Navy had 26 operational nuclear submarines and another 30 under construction. Nuclear power had revolutionized the Navy. The United States shared its technology with the United Kingdom, while French, Soviet, Indian and Chinese development proceeded separately.

After the Skate-class vessels, US submarines were powered by a series of standardized, single-reactor designs built by Westinghouse and General Electric. Rolls-Royce built similar units for Royal Navy submarines, eventually developing a modified version of their own, the PWR-2 (pressurized water reactor).

The largest nuclear submarines ever built are the 26,500 tonne Russian Typhoon class. The smallest naval nuclear submarines to date are the 2,700 tonne French Rubis class submarine attack submarines. The U.S. navy operated a 400 ton, unarmed nuclear submarine, the NR-1 Deep Submergence Craft, between 1969 and 2008, which was not a combat vessel.

The United States and France have built nuclear aircraft carriers. By 1990 there were more nuclear reactors powering ships (mostly naval) than there were generating electric power in commercial power plants worldwide.[11] Many of these submarines and other vessels were decommissioned in the 1990s.

Merchant ships

Nuclear powered, civil merchant ships have not developed beyond a few experimental ships. The US-built NS Savannah, completed in 1962, was primarily a demonstration of civil nuclear power and was too small and expensive to operate economically as a merchant ship. The design was too much of a compromise, being neither an efficient freighter nor a viable passenger liner. The German-built Otto Hahn, a cargo ship and research facility, sailed some 650,000 nautical miles (1,200,000 km) on 126 voyages over 10 years without any technical problems. However, it proved too expensive to operate and was converted to diesel. The Japanese Mutsu was dogged by technical and political problems. Its reactor had significant radiation leakage and fishermen protested against the vessel's operation. All of these three ships used low-enriched uranium.

Recently there has been renewed interest in nuclear propulsion, and some proposals have been drafted. For example, the cargo coaster[12] is a new design for a nuclear cargo ship.

Icebreakers

Nuclear propulsion has proven both technically and economically feasible for nuclear powered icebreakers in the Soviet Arctic. Nuclear-fuelled ships operate for years without refueling, and the vessels have powerful engines, well-suited to the task of icebreaking.

The Soviet icebreaker Lenin was the world's first nuclear-powered surface vessel in 1959 and remained in service for 30 years (new reactors were fitted in 1970). It led to a series of larger icebreakers, the 23,500 ton Arktika class of six vessels, launched beginning in 1975. These vessels have two reactors and are used in deep Arctic waters. NS Arktika was the first surface vessel to reach the North Pole.

For use in shallow waters such as estuaries and rivers, shallow-draft, Taymyr class icebreakers are being built in Finland and then fitted with their single-reactor, nuclear propulsion system in Russia. They are built to conform to international safety standards for nuclear vessels.[13]

Sevmorput, a Soviet cargo ship with ice-breaking capability, operated successfully on the Northern Sea Route.

Civilian nuclear ships

The following are ships that are or were in commercial or civilian use and have nuclear marine propulsion.

Merchant cargo ships

Nuclear powered icebreakers

Russian (former Soviet Union):

See also

References

  1. ^ John G. Wirt, A Federal Demonstration Project: N.S. Savannah, in Maritime Transportation Research Board , National Research Council (U.S.). Innovation in the maritime industry, Volume 1 National Academies, 1979 pp. 29-36
  2. ^ James Clay Moltz (March 2006). "Global Submarine Proliferation: Emerging Trends and Problems". NTI. http://www.nti.org/e_research/e3_74.html. Retrieved 2007-03-07. 
  3. ^ James Acton (December 13, 2007). "Silence is highly enriched uranium". http://www.armscontrolwonk.com/1738/silence-is-highly-enriched-uranium. Retrieved 2007-12-13. 
  4. ^ "Ending the Production of Highly Enriched Uranium for Naval Reactors" (PDF). James Martin Center for Nonproliferation Studies. http://cns.miis.edu/npr/pdfs/81mahip.pdf. Retrieved September 25, 2008. 
  5. ^ Full steam ahead for nuclear shipping World Nuclear News, 18 November 2010. Accessed: 27 November 2010.
  6. ^ http://www.world-nuclear.org/info/inf67.html retrieved 2011 Mar 17
  7. ^ http://www.dipublico.com.ar/english/treaties/brussels-convention-on-the-liability-of-operators-of-nuclear-ships/ retrieved 2011 Mar 17
  8. ^ http://ola.iaea.org/OLA/documents/liability%20regime.pdf retrieved 2011 Mar 17
  9. ^ Groves, Leslie R.; Edward Teller (1983). Now it can be told. p. 388. ISBN 9780306801891. 
  10. ^ Stacy, Susan (2000). Proving the Principle: A History of the Idaho National Engineering and Environmental Laboratory, 1949-1999. ISBN 9780160591853. 
  11. ^ Nuclear Weapons at Sea in Bulletin of the Atomic Scientists, September 1990, pages 48-49
  12. ^ http://www.janleenkloosterman.nl/reports/thesis_jacobs_2007.pdf
  13. ^ Cutler J. Cleveland, ed., Encyclopedia of Energy, Volumes 1 - 6 Elsevier, 2004 ISBN 978-0-12-176480-7 pages 336-340

External links